20 research outputs found

    Nonlinear dynamics of hysteretic oscillators

    Get PDF
    The dynamic response and bifurcations of a harmonic oscillator with a hysteretic restoring force and sinusoidal excitation are investigated. A multilinear model of hysteresis is presented. A hybrid system approach is used to formulate and study the problem. A novel method for obtaining exact transient and steady state response of the system is discussed. Simple periodic orbits of the system are analyzed using the KBM method and an analytic criterion for existence of bound and unbound resonance is derived. Results of KBM analysis are compared with those from numerical simulations. Stability and bifurcations of higher period orbits are studied using Poincar´e maps. The Poincar´e map for the system is constructed by composing the corresponding maps for the individual subsystems of the hybrid system. The novelty of this work lies in a.) the study of a multilinear model of hysteresis, and, b.) developing a methodology for obtaining the exact transient and steady state response of the system

    Fracture strength: Stress concentration, extreme value statistics and the fate of the Weibull distribution

    Full text link
    The fracture strength distribution of materials is often described in terms of the Weibull law which can be derived by using extreme value statistics if elastic interactions are ignored. Here, we consider explicitly the interplay between elasticity and disorder and test the asymptotic validity of the Weibull distribution through numerical simulations of the two-dimensional random fuse model. Even when the local fracture strength follows the Weibull distribution, the global failure distribution is dictated by stress enhancement at the tip of the cracks and sometimes deviates from the Weibull law. Only in the case of a pre-existing power law distribution of crack widths do we find that the failure strength is Weibull distributed. Contrary to conventional assumptions, even in this case, the Weibull exponent can not be simply inferred from the exponent of the initial crack width distribution. Our results thus raise some concerns on the applicability of the Weibull distribution in most practical cases

    Toughness and Strength of Nanocrystalline Graphene

    Full text link
    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nano-scale line and point defects - grain boundaries and grain-boundary triple junctions - that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modeling to show that the statistical variation in toughness and strength can be understood with 'weakest-link' statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidate the nano-scale origins of the grain-size dependence of its strength and toughness. Our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of 2D materials.Comment: 6 pages, 5 figures, 50 Reference

    Dielectric breakdown and avalanches at non-equilibrium metal-insulator transitions

    Get PDF
    Motivated by recent experiments on the finite temperature Mott transition in VO2 films, we propose a classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin which transitions from insulator to metal with increasing temperature and voltage at random thresholds due to quenched disorder. We describe the properties of the resulting non-equilibrium metal-insulator transition and explain the universal characteristics of the resistance jump distribution. We predict that by tuning voltage, another critical point is approached, which separates a phase of "bolt"-like avalanches from percolation-like ones.Comment: 4 pages, 3 figure

    Fracture Strength of Disordered Media: Universality, Interactions, and Tail Asymptotics

    Get PDF
    We study the asymptotic properties of fracture strength distributions of disordered elastic media by a combination of renormalization group, extreme value theory, and numerical simulation. We investigate the validity of the “weakest-link hypothesis” in the presence of realistic long-ranged interactions in the random fuse model. Numerical simulations indicate that the fracture strength is well-described by the Duxbury-Leath-Beale (DLB) distribution which is shown to flow asymptotically to the Gumbel distribution. We explore the relation between the extreme value distributions and the DLB-type asymptotic distributions and show that the universal extreme value forms may not be appropriate to describe the nonuniversal low-strength tail.Peer reviewe

    Deformation of Crystals: Connections with Statistical Physics

    Get PDF
    We give a bird's-eye view of the plastic deformation of crystals aimed at the statistical physics community, as well as a broad introduction to the statistical theories of forced rigid systems aimed at the plasticity community. Memory effects in magnets, spin glasses, charge density waves, and dilute colloidal suspensions are discussed in relation to the onset of plastic yielding in crystals. Dislocation avalanches and complex dislocation tangles are discussed via a brief introduction to the renormalization group and scaling. Analogies to emergent scale invariance in fracture, jamming, coarsening, and a variety of depinning transitions are explored. Dislocation dynamics in crystals challenge nonequilibrium statistical physics. Statistical physics provides both cautionary tales of subtle memory effects in nonequilibrium systems and systematic tools designed to address complex scale-invariant behavior on multiple length scales and timescales

    Deformation of Crystals: Connections with Statistical Physics

    Get PDF
    We give a bird's-eye view of the plastic deformation of crystals aimed at the statistical physics community, as well as a broad introduction to the statistical theories of forced rigid systems aimed at the plasticity community. Memory effects in magnets, spin glasses, charge density waves, and dilute colloidal suspensions are discussed in relation to the onset of plastic yielding in crystals. Dislocation avalanches and complex dislocation tangles are discussed via a brief introduction to the renormalization group and scaling. Analogies to emergent scale invariance in fracture, jamming, coarsening, and a variety of depinning transitions are explored. Dislocation dynamics in crystals challenge nonequilibrium statistical physics. Statistical physics provides both cautionary tales of subtle memory effects in nonequilibrium systems and systematic tools designed to address complex scale-invariant behavior on multiple length scales and timescales
    corecore